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Abstract

Approximate finite element models are developed for the purpose of preserving the
tridiagonality of the mass and stiffness matrices in the state space model matrices. These
approximate models are utilized in the design of active structural control laws for large
flexible structures.
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Introduction

In this paper we consider the problem of approximating a class of linear matrix-second-
order systems which often result from applying finite element methods to discretize struc-
tural dynamics problems. These finite element models are of the type:

E;Z;_y + DiE; + FiZiyy = Bizy + Aizi + CiZia + f; ,  1=1,...,n (1)

where E; = B; = F, = C, = 0. This type of system is characterized by two block
tridiagonal matrices: the mass matrix M which is multiplied in (1) to an acceleration
vector, £ = (%1, ..., Z)7, and the stiffness matrix K, which is multiplied to a displacement

vector, £ = (z1, ..., Za)" , §.C.

(Dl F; 0 0 T
E: D F ]
o o :
M= 0 ’ (2)
: En—1 Dn—l Fu—l
| 0 ... 0 E, D, |
Ay C; O 0 ]
By A3 C3 - :
K=-|¢og *. ° ., 0 . (3)
e * Bpoy Ap-1 Cp-a
0o ... 0 By A

Motivations for finding approximate finite element models are derived from the need
to obtain state space models which preserve the bandedness in the mass and stiffness
matrices. Assuming that M is invertible, the system (1) is expressible in the form:

f=-M'Kz+M'f , (4)

where f = (fy, ..., f,.)T. Since the inverse of M need not be a diagonal matrix, therefore,
the block tridiagonality of K is not preserved in the matrix product M~ K. The banded-
ness of this matrix product is preserved only if the mass matrix is a diagonal matrix, t.e.,

Ei=F;,=0,fori=1,...,n.

In finite element methods, it is known that if a Rayleigh-Ritz procedure is used in
generating the discretized equations, the mass matrix M is generally a banded matrix,
such as the block tridiagonal matrix exhibited in (2), but not a diagonal matrix. For the
purpose of increasing computational efficiency, eigenvalue problems associated with struc-
tural analysis are often solved not with the banded mass matrix, but with an alternate
diagonal mass matrix which is derived from lumping the mass at the nodes. This mass
lumping practice, which essentially produces a diagonal mass matrix, preserves the band-
edness (or block tridiagonality) of the stiffness matrix, thus contributing to the efficiency

of the eigenvalue computation.

Lumping the mass, however, can lead to a serious loss of accuracy in the approximation
of the eigenvalues of the continuum system. This drawback was first reported in [1], and
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discussed subsequently in the finite element textbook by Strang and Fix Ez] In spite
of its shortcomings, the lumped mass approach was nevertheless recommended in [3], in
dealing with systems with a large number of nodes. The rationale provided therein was
that the additional computational resource imposed by using the Rayleigh-Ritz procedure
may well be more profitably spent on refining the finite element mesh, yet adhering to a
lumped mass approach. The problem of developing approximate finite element models lies
in determining the conditions under, and the degree to which the matrix product M~1K
can be be approximated by a block tridiagonal matrix.

The outline of this paper is as follows. First a lemma concerning the iriversion of a class
of block tridiagonal matrices is presented. This lemma utilizes an L — U factorization of
the matrix and presents a closed form formula for the inverse. The main result is contained
in Theorem 1 in which a family of approximate finite element models is developed for (1).
The developed approximate models are utilized in an active structural control design in
which the block tridiagonality of the state space matrices is exploited. Theorem 2 shows
the degree of suboptimality achievable with this control design. A truss structure is used
to illustrate the development of the approximate models and the active structural control

design.
Inversion of block tridiasonal matrices

For the class of linear matrix-second-order systems given by (}}, the matrix M is
assumed to be invertible. Moreover, the din&onal submatrices D; of M are also invertible.
The inversion of M poses no particular difficulties even when a closed form expression
for M~! is required. The inversion process nevertheless destroys the block tridiagonality
of the matrix. The matrix M~} would be at best approximately block tridiagonal. The
notion of approximate block tridiagonality is introduced as follows.

Definition 1 (Approximate Block Tridiagonality):
An invertible matrix P is approximate block tridiagonal if there exists a block tridiag-
onal matrix P, such that
P=P+ P (5a)

and
o< ||Bol™t Al <1 , (5b)

for some matrix norm || - ||.

In this section, we show that the class of matrices having approximate block tridiagonal
inverses are block tridiagonal matrices which satisfy a block diagonal dominance condition.
Diagonal dominance is a well established concept in matrix theory [4]. In this paper, we
use exclusively the following definition for block diagonal dominance.

Definition 2 (Implicit Block Diagonal Dominance):

Let P be a matrix which has k block rows and k block columns, and P;; be the ij*
submatrix of P. P is implicit block column diagonal dominant if for some matrix || - ||,

k
Yo PPl <1 , i=1,..,k . (6)
j=1
J#
Another possible definition which will not be adopted herein is:
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Definition 8 (Explicit Block Diagonal Dominance):
The matrix P is explicit block diagonal dominant if

k
IBZ Y- WPl <1, i=1,...,k . (7
o
I
The explicit diagonal dominance condition is more exclusive than the implicit one since
(6) implies (7), yet the converse is not true.

Let
a=|Fi DY , i=2...,n : (8)
b,-=||E,-+1D;1|| , j=1,...,n—1 . (9)
Following Definition 2, the matrix M is block diagonal dominant if -
a+bh<l , k=1,...,n , (10)

with a; = b, = 0.
Lemma 1:

If the matrix in (2) is block diagonal dominant, then there exists a block L ~ U
factorization

FI 0 0 Uy F 0 ... 0 ]
Ly I .
0 e . . 0 U’ *
L B I N N (1)
.. 0 ) Fu—l
Lo oz, 1J L9 o Ul
7 U
furthermore,
Ll by <1, i=2,...,n ' - (12)
where b
| bh=b , bj=—t— . 13
' ! d 1—6,-..10._,- (13)

The proof of this lemma is given in the Appendix.

If in stead of implicit block diagonal dominance, we have an explicit block diagonal

. dominance condition placed on the mass matrix M, the above Lemma has been proved
in [5, Theorem 5.5-1]. However, we found that such a condition is too restrictive for the
finite element models that we have examined. Using the L — U factorization obtained in
the above lemmas, the inversion of the mass matrix is relatively straightforward since it is
reduced to the inversion of the L — U factors which only requires the inversion of upper
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and lower block triangular matrices. The next lemma deals with the inversion of the “£
factor” in (11).
Lemma 2:

The inverse of [ is also a lower block triangular matrix which has a main diagonal
block of identity matrices; its j** subdiagonal block, s.e., the j** diagonal block below the
main diagonal block is given by

(—-l)jL_,-.,.lL,'Lj_;[ oo L, (—l)ij+zLj+1LjL,'_1 veiLsy ey (1) LoLpy ... L,,_j+1(.14)

There are n — 1 subdiagonal blocks and n — 5 biock elements in the 5% subdiagonal biock.
Each of the block matrices in the j** subdiagonal block is a matrix product of j of the

matrices L;, 1=1,..., n.

The proof involves the application of a matrix inversion formula [5] repetitively. The
structure of £~! can be conveniently illustrated with small n, e.g., n = 4, in which case,

I 0 o o
cr=| p 1% el (15)

—LqLsLy LeLs —-L, I
The inversion of the “U factor” in (11) utilizes Lemma 2 through the observation that

ul = diag (UL U7, ..., USY) 67 (16)
where .

I &, 0 ... 0

A 0 I Gq
6= S 0 . (17)

: Yo - G-

0 e 0 I

GEFRUZL , i=1,...,n-1 . (18)

The following corollary results from applying Lemma 2 to (16).
Corollary 1:

The inverse of U in (11) is an upper block triangular matrix with a main diagonal
block of identity matrices. Its s** superdiagonal block, i.e., the i** diagonal block above
the main diagonal block, is given by

(-1YU1G1G;y ... G, (1)U 1GaGs ... Gy, - -+
(1)U Gp-jGnjs1 .- Gn1 . (19)
There are n — 1 superdiagonal blocks and n — ¢ block elements in the stk superdiafonal

block. The k** block element in the ** superdiagonal block is a product between U;" and
t of the matrices G;, y=1,...,n—1.



As an illustration of the structure of Y1, consider again a mass matrix partitioned
into four block rows and columns, t.e., n = 4.

In this case,
Ur! -Ur'Gy U'GhGs -UTYGIGRGa
a_| © U; V' -U7'Gy  U'GaGs
=10 0 Ut UGy |- (20)
0 0 0 Ut
In Lemma 1, we have shown that the matrix norms of L;, t = 2, ..., n are bounded from

above by quantities that are less than unity. On the other hand, Lemma 2 shows that the
subdiagonal block of £~} are composed of block elements which are products of L;. Thus
the matrix norm of the subdiagonal block elements in the 5t subdiagonal block are smaller
than that of the i** subdiagonal block when j < 5. This means that the significance of
the block elements depends only on its relative distance measured from the main diagonal

block. :

We need another lemma to characterize the matrix norms of the blocks in Y~!, par-
ticularly, the matrices Gj, s =1,...,n — 1.

Lemma 3:
The matrix norms of G; are bounded from above by

IGjll <&; , i=1,...,n-1 (21)
where .
G, = —4L (22)

TT- bjaj+1
The proof of this lemma is given in the Appendix.

This lemma shows that ¥ ! is block diagonal dominant. The significance of the super-
diagonal block elements diminishes for those block elements which are further away from
the main diagonal block. This property is to be expected since £~! has the same property
and the inversion of U and £ are essentially carried out using Lemma 2.

The end purpose of studying the properties of U and £ is to characterize M~! and
ultimately the approximation of M ~! K which is the key to arriving at approximate models
for (1). The next lemma which results from direct matrix multiplication of ¥~ and £~!
shows that the block diagonal dominance of M allows M~! to be approximated a block

tridiagonal matrix.
Theorem 1:

Suppose the mass matrix M in (2) is block diagonal dominant, i.e., the inequality (10)
holds, then '

Ny N ... Ny,
M =ding (U7, U5, .., U [V N2 E (23)
Nzn vweon Nnn



where the N;; submatrix is given by:
fori>3, t=3+k,
Ny = (-1)*LiLimy ... Lisa + (1)*?Gilin Li ... Ljn+

+(-1)***GiGisaLiyaLiss -+ Ly + - + (24)
+(-1)"9"%G\G; ... Ga-1LaLp-1 ... Ljy1
fori<j, j=i+¢ '
Nij = (-1)!GiGis1 ... Gizer + (-1)**?GiGyy1 ... GigaLj+
+ (-1)"*GiGiyy ... Giver1LjsaLljir + - + (25)
+ (-1)™*%G1G3 ... Ga-1LnLp-y ... Ljy1
and for i = § .
Nii = I+ GiLiyy + GiGip1 LivaLiy + ... + (20)

+G1G2 ... Gp1LaLn-y ... Liyy

with Ly =0, p€ {n+1,rn+2,..}, L, =0,r € {1,0,-1,-2,...} and G, = 0, ¢ €
{n,n + 1, ...} Moreover, if the matrix norms defined in (8) and (9) are bounded from
above by positive scalars proportional to a positive constant ¢ < 1 such that

a; <oe<l , b;<Pje<l , fori=2,...,nandj=1,...,n-1 , (27)

then M~! can be approximated by a tridiagonal matrix to O(e?)*, i.c.,

r Ut -Gy o 0 ;

-Usyles Uyt -USlGy :

M= 0 ' " 0 +0(®)  (28)

: —U;_llan—l

L o 0 ~U; 'Ly v
S

Proof of this theorem is given in the Appendix. Other properties of M~! which are
useful in constructing approximation models can be further deduced from the proof, e.g.,
the upperbounds for the matrix norms of G; and L; in the matrix Sp are proportional to

¢. Hence, Sy can be further approximated by

So=Up'+0(e) , (29)

where

up' = diag(Ur?, ..., Ug L, ..., U (30)

* The matrix W{u) is said to be of order u, (O(u)) if there exists positive constants
¢ and ' such that the matrix norm of W satisfies ||W(u)|| < cu forall0 < u < u'.
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Other block tridiagonal matrix approximations forM ! can be derived from (23) using the
expressions for N;;. For example, instead of utilizing upperbounds for ¢;’s and b;'s which
are proportional to a constant ¢, the actual bounds given in (8) and (9) can be used in
another approximation.

Theorem 1 allows the finite element models of the type of (1), in which the mass matrix
is block diagonal dominant, to be approximated. Approximations of the matrix M~1K
which dictates the homogeneous solution of (4) are obtained from using the approximation

for M~! in (28).
Lemma 4: _
Let 11 := SpK, then {1 is a block quadridiagonal matrix. It’s main diagonal block is
Url (AL - G\By) , Uz (A3 — LiC, — G3By), . ..,
eoey U (Ap — LgC-1 ~ GiBi1) s - .-,
vers UL, (Ap~1 — Ln—1Cn-3 — Ga—-1Bp) ,U; 1 (Ag — LaCa-y) - (81)

There are two superdiagonal blocks, the first and the second ones are prescribed by the
following equations respectively:

Url (€1 - G143), U1 (Cy - Gy4s), ...,
s U7L, (Cr1 — Ga-14,) (32a)
~U71G1Cy, ~U1GoCs, ..., =U;3Ga3Cn1 (32b)
the first and the second subdiagonal blocks are given in these two equations respectively:
Uy'(~LyA1B;), Us' (—L3AzBs), ...,

cees U7V (~LpAn—1 + Ba) (33a)
—U;L3By, ~U;'L4Bs, ..., —Uz'LpBa-; . (33b)
The matrix M~1K is approximated to O(e?) by 1,
MK =0+0(&) . (34)
Furthermore, M~ K is approximated to O(¢) by a block' tridiagonal matrix,
MK =U;'K +0(e) . (35)

The proof of this lemma directly follows the observation that the multiplication of two
block tridiagonal matrices results in a block quadridiagonal matrix, and that the off main
diagonal blocks of M~ K are O(¢). This Lemma is useful in approximating the solution

of (4).
Application to Active Structural Control

The approximate finite element models developed in the last section allow the designers
to adhere to the Rayleigh-Ritz procedure for deriving the discretized structural models and



yet be able to harvest from the simplicity of having a block diagonal mass matrix structure.
As it is shown in Theorem 1, these approximations are possible if the mass matrix is block
-diagonal dominant. In the design of active structural control, these approximate finite
element models are particularly useful in decomposing the control law and the design into

independent problems.

For the ensuing discussions, active structural control refers to the use of generalized
forces in changing the mode shapes and frequencies of the structure. Realistically these
forces should be applied at only a selective number of nodes. For this purpose, a control
vector u is introduced, each component of this vector acts on a block of the nodes and
these nodal blocks are defined by the block partitions adopted in the mass and stiffness
matrices, i.e.

fi=Hu; , t=1,...,n (36)

The open loop structure dynamic equation (4) can then be rewritten as

2=M"1'Kz+ M 'Hu, (37a)

where
H:= dilg(Hl, cney Hn)

ul i=(ug, ..., %) . (370)

The matrices H; thus reflect the locations at which the control forces are to be applied.
Let dim u; = m;. If dim z; = n,, then m; < n;. Those rows of H; corresponding t6 the
nodes on which no control force is to be applied can be set to zero.

and

A control law which produces a generalized force vector of the following form is con-

sidered.
f=Dsi+Ksz (38a)
where Dy and K are block tridiagonal matrices,
i T 0 ... 0 7
Sz Vz Tz ’ :
Dy=|o -. - 0 ,
Ty
[0 ... O Sp Vp |
Al ¢f o ... o] (385)
B{ Af - :
Ke=|9 . *-. .. 0
P . ol
o ... 0 B, Al

The motivation for seeking such a control law is derived from the desire of generating
active control forces which are compatible with the internal restoring forces of the structure.
This compatibility is enforced by constraining the D; and the K; matrices to be block

tridiagonal matrices.



The problem of designing such a control law which stabilizes the structure is approached
-with the help of the developed approximate finite element models. Let the matrices H; be

chosen such that for each eigenvalue

0 I '

o€ A (—U‘-—IA,' 0) ’ (39)
ra.nk(c’U,-+A,-H,-)=n,- , fori=1,...,n . (40)

This condition essentially guarantees that the system
¥ =-Up'Kw+Up'HV , (41)

is controllable. For each of the system, 1.e.,for 1, ..., n,
i =U"na , na(0) = z(0) (42q)
this = —Ama + H;, 1ia(0) = U;;(0) , (425)
design an optimal linear feedback control law to minimize a quadratic performance index

1 [ [(na)" i1 T
. (s == s (M TR,
5o v =5 [ (1) @) +ifmular, )
with positive definite @ and R matrices. The optimal control law for v; is
- 7

e ) [2]

where P; is the solution of a Riccati equation

A% %) (8 F)
"Pi(gi)Ri_l (OH.'T)Ps'+Q.'=0

A control law which produces generalized forces in the form of (38) and stabilizes
the structure modeled by (37) can then be constructed using the opti feedback gains
in (44): let the submatrices in Dy and K in (38) be chosen according to the following

equations,

[A{ V,-] = H;R;! (o HT ) P [ {) Uo,-] (46a)
-1
¢! =-m; _(H?H,-) HTC; (46b)
-1
Bf = -H; (H.T Hi) H{ B; (46¢)
T;=5;=0 . (462)
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The design procedure of the active control law involves the equations (61), (62),

and (65). The block diagonal gain matrices A{ and V; are derived from a set of inde-
pendent optimal linear quadratic optimal regulator problems which are formulated with
respect to an approximated model of the actual system. Off-block diagonal coupling terms
in this model are removed, allowing the optimal regulator problems to be solved indepen-
dently. The off-block diagonal gain matrices C’,-f and B;-f are chosen to minimize the sum
of matrix norms, .

n
Y IB:Cilla + || B:Billa (47a)
=1
where N -
B;:=I-H;H; , (47b)
R -1
B = (&Tm) H . (47¢)
If the matrix H; has the property that
rank [H; C;| = rank [H; B;] = rank H; , (48)

then H;C; = 0, H; B; = 0, and the matrix norm defined in S47a.) is zero. This implies that
if the feedback gain matrices in (46) are used in the control law

Hv =D+ Kgyw (49)
where Dy and K are defined in (38b), the performance index of (41) which is defined by

Jo (2(0), £(0)) |
_ % g /ooo [[w',. (U.-u':,-)T] Q; [ U’:":',’i] + u;.’rR,-vf"] dt, (50)‘

attains it minimum value
T2 Smin Jo (2(0), #(0)) = 3 J7 (w4(0), Uid(0) - (51)

=1

The next theorem establishes a sufficient condition under which the the performance
of the closed loop, actively controlled structure, using the controller gains defined in (65),
can be predicted from the performance of the approximate finite element model (41) under
the feedback control actions defined in (44). Let the performance index of the structure

be chosen as

s, s =3 3 [7 [(F)au(E) +fmula,

Let
(4}, ... 470 0 ... 0 ]
. ADD A3, | :
Afw=1| o - 0o . (53a)
: . ., A?;:l—l
0 ... 0 A7 ... A%, |
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; afo U? 0lws ,i_[ 0 O] Bi_| 0 O
fo = tA' '0]+[Hs]K‘D,AI"—[H'C, 0] A-f"_[E'B. 0] (53b)
'K} Kt O e 0]
K} K} K¢ o .. O
Ko2|® T e , (53¢)
0
i K&!
[0 ... 0 K% K3 |
kb2 R (0 Hf )P.- K&é—(ﬁ,-c,- 0) K5 £ - (8:B; 0) (53d)
Theorem 3:
Let
Ao 2 Agp — ding (A}gs .--s A7) (540)
Kp 2 diag (Kb, ..., KB) Kc2Kre—Kp (54b)
RD'é'diag(Rls'--' Rn) Qpéd_ias(Qh'"’ Qn) . (540)

An aggregate matrix W; of the closed loop system (41), (50) isann x n matrix whose-
elements (W,);; are given by :
—(- e (Qi+ (K5 RED) o i=i
(Wo)ij = (55)
A%l ([(AM)T Pp+ PpAco + (KD + KG)T Rp(Kp + Ka)] '_,_) t1#75

where [T);; denotes the ij block submatrix of a block matrix T.

If for some positive number u, W, is quasidominantdiagonal, then the performance
index of the approximate finite element model (41) with the control law (44) is bounded

from above by .
Jo<pt Y JF(=i(0), Ustil0) - (56)

=1

Moreover, the performance of the structure with the control law defined by the equa-
tions (38b) and (46) is bounded by

J (2(0), £(0)) < Ju +0(€") - (67)

Nlustrative Examples:
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Linear matrix-second-order systems resulting from an application of a finite element
method to solve structural dynamics problems are used herein as numerical examples.
Specifically, a plane truss vibration problem is considered. This truss structure is depicted
in Figure 1. The assumptions made are that the truss members are subjected to axial
forces alone, and not bending moments; and the members are uniform rods of identical
lengths L, mass per unit length m, cross-section area per unit length A and modulus
of elasticity £. This truss has five bays and the nodal coordinates are defined as the
vertical and horizontal displacements at the joints. External forces applied at the nodes
are decomposed into orthogonal components. The mass and stiffness matrices of the truss
are derived using a finite element method with the Ritz-Rayleigh approximation. The
element mass and stiffness matrices used in the assembly process are:

S E = .

The assembled mass and stiffness matrices are banded matrices with an identical struc-
ture as illustrated in Figure 2. In this diagram, the nonzero elements are indicated by “*”.
These matrices are scaled to remove the effects of the material properties, that is, a new

time variable 7 is introduced where r = ( aﬂz)* L and the nodal forces are scaled by g%;.

The mass and stiffness matrices can be block-partitioned into a block tridiagonal ma-
trices as ini (2) and (3). Consider a possibility of n = 6 and dim z; = 4, for all i. Direct
computation shows that M is not explicit block diagonal dominant, but it is implicit block
diagonal dominant. The matrix norms as defined in (8) and (9) are:

a3 = a3 = a4 = as = 0.4086 |, - (59)
ag = 0.5663 , (60)
b = 0.5663 , . (61)
by = by = by = bs = 0.4086 |, (62)

According to Theorem 1, we compute the matrix So which is an O(e?) approximation
to M, and the matrix Up' which is an O(¢) approximation. The norm of the difference

between M ! and its approximations are found to be:

(M~ — So|| = 0.0953 (63)

and
M~ - Up}|| =0.2378 . (64)

The approximations of the matrix M~!K as given in Lemma 4, on the other hand,
give these norms of difference:

IM~'K — SoK|| = 0.3027 (65)

and
(MK - U7 K| =0.8417 . (686)

The square roots of the eigenvalues of M~1K, SoK and U D 1K are tabulated in Table
1 for comparison. They represent the modal frequencies of the unforced system and that
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of the two approximate models. As expected, the three zero eigenvalues representing the
rigid body modes are preserved in the approximate finite element models.

A control design using the design procedure outlined earlier in this paper was carried
out. In this design, the mass and stiffness matrices are block-partitioned such that n = 3
and dim z; = 8 for s = 1,...,n. The number of control variables per block partition is
chosen to be 4, s.¢., dim u; = 4. The matrix H; which reflects where the control forces are
to be applied with respect to the nodes is chosen as

[1 0 0 0]
0000
0000
010 0| . .
H,'=0000 _l=1,...,3 (87)
0010
0001
|0 0 0 O

The objective used in selecting this matrix is primarily to insure that the system (42) is
controllable. The quadratic weighting matrices, @; and R; in (43) are chosen to be identity
matrices. Three sixteenth order Riccati equations were solved and the controller gains are
computed accordingly to (46). Figure 3 which shows the eigenvalues of the actual closed
loop system and that of the approximate finite element model subject to the designed
control law. Figure 4 displays some sample trajectories of the actual closed loop system,
indicating that structural vibrations are successfully damped out with the use of active

structural control.
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Appendix

Proofs of the Theorems and Lemmas are omitted herein due to space limitations. A
complete version of this paper is available from the author.
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Table 1.

Modal _Frequgncy Comparison

n=1to8

VA(M™K) 14142 1.3448 13132 1.2010 1.2712 11930 1.1882 1.1601
VA(SoK) 1.3426 1.3082 12719 1.2564 12175 11812 1.1658 1.1413
vA(Up' K) 12729 12541 11582 11359 1.1103 1.1084 0.9866  0.9512

n=9to16
VA(M~1K) 09594 0.8214 07053 0.7061 0.5853 0.5020 03934 0.3861
VA(SoK) 00589 0.8276 0.7014 0.6863 05900 04994 0.3838  0.3806
VA(Up'K) 0.8614 0.7968 0.7453 0.7332 0.6108 05610 04377 0.3775

\

n=17to 24
VA(M~1K) '0.3150 . 0.3020 0.2283 0.2034 0.1120 0.0000 0.0000 0.0000
VA(SoK) 02971 0.2962 0.2110 0.1973 0.1098 0.0000 0.0000 0.0000
vA(Up'K) 0.3534 0.3057 0.2774 0.2164 0.1197 0.000 0.0000 0.0000
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Figure 1. A five bay truss structure with node numbers indicated.

LN
L & g

L
LN

*

LB ]
L & ]

* ¥ p
L

* @ L

* e

*w
. &9

* »> &k
L B L WY
. »
L J ]
LA * hp
* en - -
L LY
- L 1 * Y
e e
L *
*® L] » &
“wn 2 W
)
-9
. e

.e
.o
'
PP

"
" -
"

| ]

')
¢ +e

Figure 2. Structure of the mass and stiffness matrix.
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Figure 8. Close loop system eigenvalues: x approximate system

and ¢ actual system.
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Figure 4(a), (b). Closed loop system respones due to inital conditions,
z:(0) = %(0) =1, j=1,..., 24.
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